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SLLECTION OF A L)LIAY LINI &OVEL

by

Rufus Oldenburger 1

and

Lawrence L. Hoberock
2

Purdue University

A mathematical model of a linear system can be derived using an

approxitation of the cctvolution integral. This paper selects the

model such that responses of the model to conmonly occurring inputs

are closest to corresponding responses of the system. The transfer

function of the model is the product of the system transfer function by

a linear combination of two delay terms divided by an infinite product.

If the model delay time is small the infinite product may be replaced

by 1, and thus may be dropped. The delay time and the number of delay

elements are selected such that the responses of the simplified

model are closest to corresponding responses of the system. The

validity of the simplification is investigated for various inputs

by comparing the responses of the simplified model with those of the

exact model. It is found for several types of commonly occurring

inputs that the number of delay elements should be chosen as large
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as physically possible. The results show that the value of the

delay time should be selected as a function of the number of delay

elements and of the system bandwidth. It is further shown that

this function is the same for each of the inputs.
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INTRODU CTION

To design a controller for a physical plant, the system must be

identified by some method. An analytical representation of the system

uhich may be used to find the output of the system from its input is

often desired. Truxal I presents techniques for evaluating the differ-

ential equation, the frequency response and the impulse response of

linear, time-invariant systems.

In 1957 Goodman and Reswick2 presented an application of the theory

developed by Tustin 3 , Lewis and others as a means of identification for

linear, time-invariant systems. A mathematical model of the system is

derived by approximating the convolution integral with a weighted time

series having a delay interval T. The smaller the value of T and the

larger the number of elements retained in the time series, the better is

the approximation. Given a system with unknown characteristics the im-

pulse response may be approximated from the time series as closely as

desired.

The delay line synthesizer of Goodman and Reswick 2 (See Figure 1.)

constitutes a physical model which uses only a finite number of elements

in the time series. The weighting factors are determined by adjusting

the synthesizer settings until an optimum fit is obtained between the

model and system responses to normal operating inputs. Chang 5 continued

the work in applying the delay line synthesizer.
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In this paper the weighted tlme series is used to derive a mathe-

matical model by keeping only a physically realizable number of elements

in the series. The key to this study is the use of an infinite product

employed by R. Oldenburger and R. E. Goodson6 for transcendental func-

tions arising in the analysis of fluid flow through pipes. The Laplace

transform of the terms in the series is taken and a transfer function

obtined by writing the transformation in closed form. By choosing a

small value of delay time the infinite product in the transfer function

may be neglected and a simplified model representation obtained. This

approximate model representation is used to compare system and model

responses to various inputs. From this comparison the number of delay

elements in the model and the value of the delay time are selected such

that the responses of the model are closest to corresponding responses

of the system. The exact model responses are compared with the approxi-

mate responses to show that the simplification is justified.

In what follows t denotes time.
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. DERIVATION OF THE DELAY LIM MODEL

Let g(t) represent the impulse response, or weighting function, of

a linear system. The response c(t) of the system to an input r(t) may

be determined by the convolution integral as in

c(t) " 4tg(0a) r(t - o) d o , t 0 (1)

where

r(t- - 0 t < C (2)

Let cl(t) be defined by

0 1(t) -[g(T) r~t -T) g(T) r(t - 2T)

g(n T) r(t - n T)]T

here T is an increment of the variable ar and n is a positive integer.

If T is small and n is large enough we may write

c(t) CA cl(t) (4)

where 4 means "is approximately equal to." We designate cl(t) as the

response of the delay line model (DIM) of the system. The Laplace

transform of a function of time f(t), that is t [f(t)] , is denoted

by F(s), uhere s is the Laplace variable. From Equation (1) It may be

shown that



C(s) fl() G(s) (5)

Since r is defined by Equation (2) we have 8

[r(t -n T)] - R(,) e - n T s  .(6)

Thus, taking the Laplace transform of the terms in Equation (3) yields

C1(s) - R(s) 0,3.) (7)

vhere

%(a) a [g(T) eT + g(2T) • " 2T=  . . . + g(n T) e'nTs]T . (8)

Let G1(s) be defined as the DIM transfer function. Suppose that a linear

system has an unknown transfer function G(a). If the impulse response

g(t) is measured at times Ts 2T, . . ., nT, then GI(a) is determined.

The smaller the delay time T and the larger the number of delay elements

n, the better is the approximation in Relation (3), or the better does

G (S) approximate G(s).

There must exist a lower limit for T and an upper bound for n if

the DIM is to be physically realizable. Knowledge of how the difference

between system and model responses depends on n and T is desired. These

parameters are to be selected such that the model fulfills nominal

engineering requirements.
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2. FIRST ORDER SYSTiM

Consider the system described by the transfer function

G(s) - a (9)

Employing the inverse Laplace transform we obtain the weighting function

g(t) f a •-at (I0)

Hence GI(s) in Equation (8) becomes

01(s) - a T [e-T(a+s) . -2T(a~e) , .* enT(as)] • (11)

Using the transformation

z = T(a * s) (12)

we write Equation (11) in the closed form

a T e-z - (n + )z  
(13)"T" ) iz -e-iZ(3

It is desired to expand the denominator of the term on the right of

equation (13) as an infinite product. Let a function Z(z) have simple

zeros at the points Zl, z2 , z3, . •., where

Lirn
k-V0 IkI c=
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these being the only zeros of Z(z) and zk  0. If Z(z) ie analytic

for all values of z, it may be shown that.9

Z(z) Z0{F[(l -. !.) exp (..)jexp[ ZI ] (14)

whiere exp [ ] denotes raising the base "e" to the power indicated in

the brackets. The zeros of the denominator above are given by

- 2k1j, k - 0, . 1, _ 2, ... (15)

where j a V Hence the conditions for expansion of the denominator

of Equation (13) by Equation (14) are not satisfied due to the root

to M 0. This problem is solved by writing

aim- 0-rz  . z (6)
-[1 - I -1 I 1

The bracketed expression now satisfies the conditions for expansion, the

zeros, Zr, being given by

Zr - 2rTj, r - , ± 2, . . . (17)

Thus by Equations (14) and (16)

bst n h er n r zi n aio 1 yield (18)

Substituting the expression for z in Equation (13) yields

G~s f a [iT] H4() (19)



whlere T -IT (20)
m1 " [l-T 2(as }(2

4W2 10,

H(s) . [e- aT 84Ts - e-8(n+.)T e-(n+ )Ts] (21)

and the index m is a non-negative integer. Figure 2 presents a block

diagram of Gl(s) in Equation (19).

Let a new function Cl(s) be given by

~s a1 i (22)

Then from Equations (7) and (19) it follows that

C1(S) - Cr(s) H(s) - (23)

Substituting the expression for H(i3) and employing the inverse Laplace

transform gives

C() - *aT C* [t ~

_ -,(n.)T c t - (n + ) TIu [t - (n + ) T]

where c(t) is the inverse Laplace of Cl(s) and the function u is defined

by

u(t - tl)  0 < t> 0 (25)1, t >t I
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3. APPR0WaATION OF THE DIX TRANSFER FUNCTION

let T be small enough such that the product aT is much loes than

one (aT << 1). Then & reasonable approximation of Gl(s) results wh~en

the infinite product IS~ is fieglected. From Equation (22)

Cls ~) aT 4<1 .(26)

We introduce ClA(s), where

ClA(s) - C(s) H(s) (27)

Hence from Equation (23)

Cl(s)V CIA(s) &T 4T< 1 (28)

Let the approximate model response be denoted by c1A(t), which is the

inverse Laplace transform of CjA(s). Substituting the expression for

H(s) in Equation (21) and employing the inverse Laplace transform we

obtain

ClA(t) - e4aT c It - iT] u[t - IT]

- a~i)c[t -(n+ )T] u It -(n * )T]

To differentiate from the approximate model response we henceforth refer

to cl(t) as the exact model response. The problem of selecting n and T



is simplified using Relation (28). In the following study we select the

maodel parameters and show that employing this relation is reasonable for

five connonly occurring inputs- to the system.
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4. STEP INPUT

Consider a step input to the model and the system given by

r(t) -u(t) (30)

Using the Laplace transform, from Equation (5) we obtain the system

responlse as

From Equation (29) the approximate model response becomes

clA (t) - 0 P 0 jjt < T (32a)

clA(t) . e-4 aT - -at , JT t < (n - JYr (32b)

clA(t) - e41T 1i - eanT] , t (n 4 J)T ( 32c)

Selection-of Model-Parameters

By Relations (32) the approximate model response varies with time

only for JT I t < (n * J)T. For t outside these limits the response

of the model fails to follow that of the system. Figures 3 through 5

show the system and model responses to a step input of magnitude K with

unity bandwidth (a - 1) and various values of T and n. The responses are

normalized by dividing each term by K. The model response is more satis-

factory for large n and small T, as for example, n - 300 and T - 0.01 in
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Figure 3. However, a delay line model with such parameters would be

unpractical. Goodman and eswick use n - 20 in the delay line synthe-

sizer 2 . We see from the response plots mentioned above that for any n

the final value of clA(t) has a maximum which is dependent on T. We

designate TO as that value of T for which the maximum final value occurs.

As T -+ TO from values less than To, the final value of ClA(t) increases,

but the model follows the system less closely for the range

JT A t c (n + J)T. For finite non-zero values of n and T the model

output is always less than that of the system. We choose to select n

and T to maximize the final value of clA(t). Since for any T the beat n

to accomplish this is infinitely large, we first select n as large as

reasonably possible for applications. The time T is then chosen to

maximize the final value, V, of the approximate model response, where

from Equation (320)

v a .-*aT [1 - .-anT] (33)

Let no be the value of n selected for the model. The maximum value of V

occurs when T - To, where

In 2(2n o 1). (34)

The maximum final value, VM, of OlA(t) is obtained by replacing T in

Equation (33) by the expression for To, giving

VM - (2, l) [ 1- (2o% + 1)-1] (35)

If no - 20, the value used by Goodman and Reswick, and a . 1, for
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simplicity, Equations (34) and (35) yield

To  a 0.1857 , VM - 0.8891

Figure 6 indicates system and approximate model normalized responses for

a step input of magnitude K, with a - 1 and T -TO at no - 20. It is

easily verified from Equations (28) and (29) that

Li.tm To  - 0 36
no- (36)

Lim VM - (37)

Thus better model response, using values of To, is obtained by increasing

n.

Compari,on of the Aproximate Model with the Exact Model

We have selected the model parameters using an approximation which

neglects the infinite product 1. in the expression for Gl(s). To

determine the effects of using this approximation we replace R(s) in

Equation (22) by the Laplace transform of the step input to obtain

a T[
Cl(s) (38)a- -~ 0(38)

Expanding this expression for Cl(s) in partial fractions and employing

the inverse Laplace transform, we have

cl(t) - - eat (1 + m1 A. sin [ t - g (39)



0 0

Hs It H

C C C

U) ODN
z OD
0

CLC

w z3

00

0) w-

0 a.

oo
IE-4

0 o (D C~i

OO0 %.0 y 0,l



19

ighere

FTa2T (40)

am- (41)

Om Tan 1 4I (42)

L 2 Tr2  (43)

a T

m T1f (454)

Hence from Ihou.tion (24)

C1 (t) - 0 ,0 t < ~T (46a)

01(t) - [ .4 -aT - a K3.!.t - i - i1}

JT t < (n + )T

(46b)
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cl(t) - ITT] [1 -e-anT] •aT , t (n + j)T . (46c)

Comparison of Equations (46) with Equations (32) indicates that both

cl(t) And clA(t) are zero for 0 & t < jT. For the second range,

JT g t < (n + J)T, the effect of the approximation is to omit the

attenuating infinite product iT in the first term and the infinite

sinusoidal series in the second term of the exact model response. For

t ? (n * J)T the approximation omits 1 T in the exact model final

value. We note that T 1 as T - 0. 0 Further, T. - (-I)m l 2.

For small aT we have ct 7 'm -i . Tatong -O - 0,

2, - the summation in Equation (39) is 1 3 between zero and

AT depending on the value of t. The same is true for the summation in

Equation (46b). These results and numerical studies indicate that if

aT < i one can neglect the summation and hence the product Te.

To evaluate graphically the effects of the approximation we employ

Equation (3) for the exact model response. Let the inverse Laplace

transform f(t) of a function F(s) be denoted by Sl [F(s)]. Since8

~-l [ (, *nTs)] - u(t -n T) (47)

Equations (3) and (10) are used to give

cl(t) - a T [e-aT u ( t - T) *- e2aT u(t - 2T) +

(48)

e- au(t - nT)]

Figure 7 shows the system and exact model normalized responses for a

step input of magnitude K, with a - 1, T - TO and no  - 20. Comparing

these plots with those in Figures 3 through 6 indicates that the most sig-

nificant effect of the approximation is the smoothing of the "staircase"
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response of the exact model. A further effect of the approximation is

to decrease the time at which the time-variant model output begins from

T to JT. The time at which it ends is increased from n T to (n * J)T.

This as well as the smoothing is attributed to omitting the sinudoidal

series in the approximate model response.

We wish to determine whether the results in selecting the approxi-

mate model are applicable to the exact model. It is recalled that n was

chosen as large as reasonably possible for applications. The delay time

T was then selected such that the final value of the approximate model

response given by Equation (33) was maximized. From Equation (46c) the

exact model final value, .Vl, is given by

T- [TT~] [1 - e-anT] 04aT *(49)

An attempt to maximize this expression for V, by differentiating with

respect to T would be fruitless. We choose to select n and T for the

exact model the same as for the approximate model provided that the

value of T is approximately unity. This means that the product a T

must be small. It is desired to know how small. In his discussion of

the paper by Goodman and Reswick2 , C. M. Chang notes that if the delay
1

time T is greater than _-L, where a is the system bandwidth, the fre-

quency response, particularly in the high frequency region, obtained on

the delay line synthesizer is questionable. This is derived from the

fundamental theorem of sampling 0 which states that a signal is completely

determined by values of the signal (samples) taken at a series of in-

stants separated by T1 - ia, where T1 is the sampling period. From these

considerations, for the remainder of this work it will be assumed that
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0 4a T < (50)

let new quantities 7 and %be defined by

a2 T2

~~ Ln [I+Y 3 ] (52)

Then for the denominator of the expression for 1f1T in Equation (40) we

have

1 [1 + ey' * (53)

But it is seen that

al

Bence from the relation 1

m2  6

we may write

W&<0 a 2 T 2 < (56)
24

This gives

1 > .90(57)

e Wm
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and we conclude from Equation (40) that

0.9900 eii < 1 (58)

Consequently it is safe to assume that the results in selecting the

approximate mo~del are reasonably applicable to the exact model.
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5. RAMP INPUT

The ramp signal given by

r(t) - t u(t) (59)

is the second input to be considered. Using transform techniques we

obtain from Equation (5)

c(t) m [t + e1.at] .(t) . (60)

To derive the approximate model response we substitute this expression

for oCt) in Equation (29), giving

ouA(t) ' 0, 0 t < j (63a)

GCA(t) - *4aT It - jT..]L~
a I a(61b)

JT t < (n j )

c1k(t) - &4T - a(ntij)T I

- aT IT * . -e'T [(n + J)'r*(6c

t ?.(n + )T
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Selection of Model Parameters

Comparison of the approximate model response with the system res-

ponse indicates that for small T the response of the model follows that

of the system reasonably well for the second range, JT ! t < (n + J)T.

For the first period, 0 1 t < JT, the approximate model output is

zero, as in the step input case, while for the last range,

t a (n * T, a lag in slope as well as position appears in the response

of the model. Figures 8 and 9 show the system and approximate model

normalized responses for a ramp input of magnitude K with various values

of T and n and unity bandwidth. Again, large n and small T give more

satisfactory model response, however these values are limited in practi-

cal applications. For small T the approximate model response follows

that. of the sys tem satisfactorily during the second period. For

t ? (n + J)T the approximate model response exhibits a constant final

slope, S, where from Equation (61c)

S• e aT [1 - *-anT] (62)

The system response, however, has a constantly increasing slope approach-

ing unity as t-* . The expression for S in Equation (62) is identical

with that for V in Equation (33). Hence S has a maximum value occurring

at T - To. As T -+ To from values less than To, the slope S increases;

however, the response ciA(t) follows the system response c(t) less close-

ly for JT A t < (n * J)T. Again, selecting the model parameters pre-

sents a conflict between maximizing S and improving the model response

for the second range of t. We choose to select n and T to maximize the

final slope of the approximate model response. Thus n and T are selected

the same as in the step input case.
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Comparison of the Approximate Model with the Exact Model

It is desired to determine the effects of the approximation in

which iJ in the expression for 01(s) in Equation (19) wAs omitted.

Replacing R(s) in Equation (22) by the Laplace transform of the ramp in-

put yields

By expanding this expression for C*(a) in partial fractions and employ-

ing the inverse Laplace transform we obtain

C*(t) - t •

{m [sin t 17m t 
(64)

where T . Am, ard - M are given in Equations (40), (41), and (42)

respectively. From Equations (24) and (64) it follows that

cl~t) - o0 o t < JT (65a)

c1 (t) F H [ I.aT (t - 'T)] . -al

+ e -at Am sin t + Om- T )

T-4 t < (n +)T
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C1 (t IT [lJ [e4aT -. a(nJ)T]I

04 &4T{l ] [T - e-anT (n + )]+--i-eanT] (65c)

t . (n+j)T

Comparison of Equations (65) with Equations (61) indicates again that the

effect of the approximation is the absence of the atteruating product

7T from the a proximate model response. Also missing is the infinite

sine series which causes the discontinuities in the exact model response.

To illustrate graphically the effects of the approximation, the

expressions for r(t) and g(t) in Equations (59) and (10) are used in

E4iation (3), giving

cl(t) = a t [eaT (t - T) u(t - T) + e-2 aT (t _ 2T) u(t _ 2T)

(66)
+ . +e naT (t -n T) u(t - n T)]

Figures 10 and 11 show the system and exact model normalized responses

for a ramp input of magnitude K with a - 1 and several values of n and

T. It is recalled that the approximation for the step input resulted in

the smoothing of the "staircase" exact model response. For the ramp in-

put, however, comparison of, for example, the responses in Figure 8 with

those in Figure 10, shows a smoothing of the "staircase slope" of the

exact model response. A further effect of the approximation is to de-

crease the time at which the model response begins from T to T. Also,

the time at which the constant-slope portion of the model response
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begins is increased from nT to (n + )T. This and the smoothing are

again attributed to the absence of the infinite sine series in the ap-

proximate model response.

In Figures 10 and 11 the staircase nature of the slope for the exact

model response is indicated by dashes. These dashes are straight line

segments and are connected. The connections are left out to make the

changes in slope clear to the reader. Thus in Figure 10 each dash lasts

0.1 unit of time. One dash runs from t - 0.1 to t - 0.2, a second from

t - 0.2 to t - 0.3, etc. In the case of the n = 20 curve, which starts

at t a 0.1, the slope changes every 0.1 unit of time until t = 2.0. After

t - 2.0 the n - 20 curve has a constant slope.

As in the step input study the concern is whether the results in

selecting the approximate model are applicable to the exact model. We

chose to first select n as large as possible for practical applications.

The time T was then selected to maximize the final slope S of the ap-

proximate model response. This gave the same result for To as in the

step input study. From Equations (65c) and (62) the final slope, S1 ,

of the exact model response is given by

S, [irJ S (67)

Hence by Relation (58) we conclude that maximizing S rather than S1 is

a reasonable method for selecting the value of the delay time.
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D(RJISE INPUT

The third input to be considered is given by

r(t) 6(t) (68)

wvhere the unit impulse, 6 (t), is defined by

6(t -t1 ) M 0 , t tl

E ~, (69)

(t-t)d t -1I, > >0

Since the input is an impulse, the weighting function in Equation (10)

is used to give the system response

C(t) a C at u(t) (70)

Hence by Equation (29)

c 1(t) - 0 0 o t < IT (71a)

ClA(t) - 0 ,t (n + )T (710)
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Selection of Model Parameters

For the period : t < (n + )T, the approximate model response

is identical with the response o the sys tem. Figure 12 indic .tes the

system and approximate model normalized responses for an impulse of

strength K with a = 1 and various values of n. Only one value of T is

used due to the simplicity of the response plots. Good model response

results when the lower limit - of time t In Equation (71b) is small and
2

the upper limit (n + J)T is large. That is, the smaller the value of T

and the larger the vwlue of n, the better Is the model response. Prac-

tical values of these parameters cause conflicts in model selection. For

any T the best n is as large as possible in physical applications. On

the other hand, the problem of selecting the best T for any n is that if

T is chosen too small the interval

(n +)T- T - nT

of good model response is too small. If T is selected too large, the

starting time te - JT of the model output is too great. Hence the dif-

ficulty in selecting T for the impulse study differs from that in the

previous two cases. The criterion for selection is time interval and

starting time of model response, or graphical abscissa, rather than

values of model output or graphical ordinate. We choose T to maximize

the area under the approximate model response curve as a reasonable

solution to the problem. The area Ai under this curve, found by inte-

gration, is given by

- O-J&i [3 - -anT] (72)



4- 36

0

0 W
O cn

.0
OC,

0 Cf0
w 0

Cf) 00O
0 IN 0

0 4
0I-

C',

C/)

00
IIi



37

This expression is identical with that for V and S of the previous two

cases. Hence the value To of the delay time T to give maximum A is

given by Equation (34). The expression for maximum area is the same as

that for V. in Equation (35). From Equations (36) and (37), increasing

%lowers TO and increases the maximum area as before.

Comparison of the Approximate Model with the Exact Model

To determine whether using the approximation is a reasonable method

of selecting n and To the exact iwdel response must be determined. Since

R(s) - 1 for the impulse input, Equation (22) becomes

Cr(s) + (73)

Using partial fraction expansion and the inverse Laplace transform we

obtain from Equation (73)

c (t) - a + En -.sn[2mt - 1 . (74)

Thus by Equation (24)

ci(t) -o , o 6 t 4 T (75a)

c1(t) -at fa* + 3  rl
cl(t)-a e'a~ _ Am sin r2--mt +  0 _- m7']}

m-i (75b)

T _< t 4 (n +)T

cl(t) o t> (n -) . (75c)
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Unlike the responses in the step and ramp input studies, the infinite

product TT does nct appear in the expression for cl(t) for the im-

pulse input. Hence the effect of omitting Ts from Gl(s) in the

simplification technique is the absence of only the infinite sine

series from Equations (75).

To facilitate plotting el(t) versus t, Equation (3) Is used to give

for the impulse input

el(t) " a T 19-aT (t - T) + e-2aT &(t - 2T)
(76)

. . . e naT S (t - n T)]

The system and exact model normalized responses for an impulse input of

weight K are shown in Figure 13, with a - 1, T - 0.1, and various

values of n. The exact model response is a series of impulses corres-

ponding to a sampling of the system response. Hence the effect of the

approximation shown in Figure 12 is that of an ideal holding device

over a limited time interval. Omitting the infinite sine series in the

approximate model response not only changes the limits of model response

from T to JT and nT to (n + JT)T but also removes the discontinuities

of the exact model response.

Since the ordinates of the response cl(t) represent strengths of im-

pulses, there is no area under the response curve to maximize in selecting

T. The problem of selection, however, is similar to that in the appro-

ximation. The interval nT - T is desired large, which for constant

n means increasing T. Conversely, the starting time of model response

and interval between the impulses is desired small. The exact rodel

response Is a pure sampling of the system response for the time interval
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of Equation (75b). Thus a technique for selecting the delay time is to

maximize the area under the system response curve between limits deter-

mined by the exact model response, namely JT S t < (n + J)T. But this

area is exactly that given in Equation (72). Thus unlike the previous

two input cases, selection of the delay time could have been effected

without using the approximation.
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7. PULSE INPUT

The last transient input to be considered is the pulse shown in

Figure 14a. For K = 1, where K is the height of the pulse, the input is

given by

r(t) - u(t) - u(t - 21 (77)

where r is the duration of the pulse. It is easily shown that the sys-

tem response to this input is given by

c(t) - [3. - *-atlumt.~[ - *a(t- z)] u~t - . (78)

From Equation (29) it follows that

ClA(t) - 0 a 0 t < T (79a)

n clA(t) - eaT - eat , JT = t < (-r* T) (79b)

ClA(t) e -a(t- -C) . -at ( (+ JT) _ t < (n + J)T (79c)

_iT -at
r>nT [clA(t) . - T -e e T =t < (n +j)T (79d)

C1A(t) . eJaT [~- - aT -a (t r)] u(t - T4T)

(n + )T t < T + (n + j)T

(79e)
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C1A(t) - 0 t 4 Ir.C(n +J)Tr (79f)

Selection of Model Parameters

Comparing Equations (79) with Equation (78) reveals again that the

smaller the value of T and the larger the value of n, the better is the

approximate response. Figure l4b shows system and approximate model

normalized response for a pulse input of magnitude K with a - 1 and

values of T, n, and '? as shown. The output of the model is equal to

that of the system for (T * le) £ t I (n * J)T. For t outside these

limits the value of 0IA(t) is always less than cl(t). For any T the

best n is as large as practical in physieal applications. If, on the

other hand, n is held constant and T is reduced to improve the response

of the approximate model for JT j t C + JT, the response for

t k( * )T is less desirable. If T is increased the reverse is true.

As a reasonable compromise to the conflict in selecting the best delay

time, pick n as large as possible. Then choose T to maximize the area

under the approximate model response curve. By integrating it may be

shown from Equations (79) that this area, Ap, is given by

- [1 _ -anT] -JaT (80)

With the exception of the pulse duration I, the expression for Ap is

the same as that for V, 5, and Ai encountered earlier. Hence the delay

time to give maximum area, ApM, is given by Equation (34) and

Ap - TVn  (81)

where V. is given in Equation (35).
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Comarison of the ARunroxiMate Model with the Exact Model

Substituting the expression for the impulse input and the system

weighting function in Equation (3) we obtain

c1 (t) *a T {ea-T[u(t - T) - u~t - T - -C)] u(t -T)

* -2aTl [u(t _2T) _u(t _2T_-r~)] u(t 2T) (82)

4 -a [u(t - n T) - u(t - n T - T21] u(t - nT)1

By inspection, the area Al under the curve given by a plot of cl(t) is

given by

A, - 'r[aT][le-T +e-2&T + -naT] (3

But the product of the bracketed quantities in this expression is easily

seen to be the final value of c1(t) in Equation (48). Fromi Equation

(49) it follows that

A1  [7NT] [ I_ - nTI e4&aT (84)

By Relation (58) it is concluded that choosing T to maximize Ap in

Equation (80) rather than A, is a reasonable technique for selecting

the delay tine.
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B. SINUSOIDAL INPUT

Consider lastly the sinusoidal input given by

r(t) - sin ( wt) u(t) (85)

where W is the signal frequency. Let the quantities QI, Q2 , and

be defined by

aui
a (86)

a

Q2- W~ ~.~2)f (87)

-- tan 1 (--) (88)a

Then for the approximation study we follow procedures similar to those

in the previous four cases to obtain

OlA(t) -0, 0< t (89a)

clA(t) - Qleat + Q2 e-' aT sin [Wt - (- bT],

IT S~ t 4 (n + *
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cI(t) Q,5 '4aT [sin (wt - - T"

e-anT sin( t- -WT- nT)] (aec)

Selection of Model Paramters

The response of the system to the sinusoidal input is given by

c(t) - {Q, e -t +*Q sin [Ut - 'flI} u~t) * (90)

From Equation (89b) decreasing the value of T improves the model response

during the specified interval by increasing the value of e 4 T toward

one and decreasing the value of the phase lag J&O T toward zero. On the

other hand, from Equations (89b) and (89c), too small a vslue for T gives

poor over-all model response. For any T the ntmber n should be chosen

as large as possible. Again some compromise is needed in selecting T.

We compare clA(t) with cl(t) for t ? (n * )T. Assume that the quantity

(n + )T is large enough such that the exponential in Equation (90) may

be neglected, giving

c(t) O Q2 sin [Wt- '] , t) (91)L a

The first sine term of Equation (89c) contains a phase lag of j u) T

radians from the sine term of the system response. The second sinusoid

lags the first by W n T radians. However, assuming that

a-JaT > e - a(n + )T (92)

the effect on clAt) of the second sinusoid of Equation (89c) will be
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negligible regardless of phase shift Jn T. Conversely, if the second

sine term with its attenuating exponential is neglected completely the

parameter n will be absent from the remaining terms. No method for

selecting T would then be available. Hence as a compromise we write

CIA(t) 1 Q2 e-JaT 1[1 - eanT]I sin [Sot - WT - --
(93)1

a

in vhich the effect of the phase shift uan T is neglected. Comparison

of Relation (93) with Relation (91) indicates that T should be chosen to

minimize the shift JWT and mu ximize the quantity e " aT II - e'AnTI .

However, since the system is linear, the delay time should not be a

function of the signal frequency W. Hence, we select T only to max-

imize the attenuating expression above. The input frequency must be

kept small in order that the model response phase lag be small. Thus

the model parameters n and T are selected as in the previous four cases,

the delay time To being given by Equation (34). Figure 15 shows the

system and approximate model normalized responses as given by Relations

(91) and (93) for a sinusoidal input of magnitude K. The values of the

parameters used are a - 1,Wd a 1, n - 20, and T T o0.

Comparison of the Approximate Model with the Exact Model

To determine the exact model response we replace R(s) in Equation

(22) by the Laplace transform of the sinusoidal input to obtain

Cr(s) [2 u)2 [ a
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Let the quantity JBMJ be the absolute value of B., where

T T2(a j )2

"- 4 IT2 M2

and j ab as before. We define the quantity _ to be the arc-

tangent of the quotient obtained by dividing the imaginary part of Bm

by the real part. Deriving the expression for c*(t) by the inverse

Laplace transform, we have from Equation (24)

cl(t) - 0 0 t < 4 (96)

01(t) -e-t Q + m sin 2T t Om - Mr]

+ '+a aim { t , -I B1 < ] , (96b)

JT <. t < (n + J)T

c1(t) B MI e44a{i [ i "t T ]

-anT sin [Lot ~a) T - W n T'] (96c)

t Z (n + )T

Neglecting the infinite series in Equation (96b), we obtain Equations

(89) f rom Equations (96) by replacing I Bmj and A~ with Q2 and - f

respectively. Since the model parameters were selected using Relation

(93), we must determine whether the approximations
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-~ ~ (97)

Q2 ~ m (98)

are reasonable.

Introduce -m, where

Win {tan4l 2& 2a) T2  u))()
M-1 14r2 m2 -T2(a 2 II

For the approximation of Relation (97) it may be easily shown from

Equation (95) that

z IC- m (100)

where cp is given in Equation (88). let kw be a non-negative number

such that

"1 uk~ a (i)

Then it is shown in Appendix A that

0  1 Cm <~ kw 1~, (102)

Consequently, if the value of 40 is greater than the bandwidth of the

s"stem, it is necessary to establish a maximum for kW in order that

the approximation of Relation (97) be reasonable. By reasoning similar

to that preceding Relation (93) we have from Equation (96c)



t ?. (n + j)T ; (ni + J)T >>I n T >> iT

Lot a now quantity W.({ be designated the exact model phase lag, whiere

from Relations (91) and (104)

W.- - 4 -[ ~LT] (:105)

Substituting the expression for 4p andI yields

-p 0) TO + am(106)

By the restrictions on the product a T in Relation (50) we obtain from

Relations (102) and (103)

o f llk 48 ka);j1 (107)

0 T k > 1 . (1o8)

Hence for WO i a we are assured that WMcan be no larger than 0.271

radians, or approximately 15 degrees. By Relation (108) this constraint

on the exact iodel phase lag increases for a) > a. We intuitively assume

that a phase lag greater than 15 degrees would not meet nominal engineer-

in~g requirements. Thus 4l) is restricted to values less than or equal to

the system bandwidth. The approximation of -C by -'P is then reason-

able from Relations (100) and (102).

To juistify Relation (98) introduce TOi I wh ere
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S]2 a W T2 ] ] (109)

From Equation (95) it follows that

Let a new term Y be defined by

a2 T2

41r2

Then by Relation (50)

6 -1 2 (112)

It is shown in Appendix B that

2k)- 1 <12
,It

L -96 k(13)

Y. •

.1 k <(1

By Relation (112)

Since k.) has aLready been restricted to values less than or equal to one,

we have from Relation (113)
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0.979 - 1.011 0 4 A 1 . (115)

From Equation (110) we conclude thiat the approximation in Relation (98)

is reasonable.
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9. SECOND OREER SYSTEM

To note some of the difficulties in selecting the delay line mo~del

for more complex systems, consider the transfer function of a second

order system

b( c be(16
(eb) (a+) ,c(16

uh~ere b and c are either both real non-zero numbers or are non-zero

complex conjugates. Following a procedure similar to that for Equation~s

(9) through (19) we obtain

b15 c Ibc}{4bTe-4T - e-(n4i)bTe-(n*J)Ts
GI~s)- --b - (b* a) +T2b* )

(117)

e-4cTe-Ts -e(n~'i)cT,-(nl*)Ta

(c~a)~ [1*T 2(c + s)2

Iatth qunttie 8 [t] and g*[t) be given by

b~t b(cb)[ e(18
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gi] c )[b - *-bt]go (c - b) .(119)

By omitting the infinite products in Equation (117) it may be shown that

the approximate model response to a unit step input becomes

c1(t) - .b t b - iT] U(t- T)

- -(n*i)bT ~ t - (n+ iyr] u[t - (n + jT)]

8:b - (120)

-* e~[t _ T] u(t _ ?)

* e(n)CT 4 [t -(n 4 DT] ~- (n + )'r]

The final value, V, of the approximate model response is given by

V~~ - - 104*-bnT] - -dT L1 - -cfljT (121)

The problem of selecting T to maximize V is more complicated than for the

first order system. Taking the derivative of the expression for V with

respect to T, equating the result to zero, and rearranging, we obtain

*4cbT  1 - (2n + 1) O-cnT (122)e-cT 1 - (2n + 1) 9-;;T

An explicit expression for To in terms of n, c, and b cannot in general

be found from Equation (122). If the input to the system is a ramp, the

final slope S of the approximate model response is also given by the ex-

pression for V. Further study is therefore necessary to find a method

for selecting the model parameters.
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10. SUMKARY AND CONCLUSIONS

A delay line model of a linear system is selected such that the

responses of the model to commonly occurring inputs are closest to

corresponding responses of the system. It is found for each input that

the number n of model delay elements should be chosen as large as prac-

tical for applications. The selected value, To, of the delay time, T,

is then given by

ToaLi (2no + 1
S ano

where a is the system bandwidth and no the selected n. For the periodic

input studied the signal frequency is limited to values equal to or less

than the system bandwidth in order that the model be acceptable.

The expression for To is obtained by a technique using infinite

products previously employed successfully by Oldenburger and Goodson6

in distributed parameter studies. By assuming a small value of the

model delay time the infinite product appearing in the model transfer

function is neglected and a simplified model representation obtained.

It is shown that this approximation is reasonable for the transient

inputs if aT < . The same is true for the periodic input if in ad-

diti.n Lne input frequency is less than or equal to the system band-

width. Although the approximation method is quite useful in the first-
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order system study, new difficulties noted at the conclusion of the

investigation arise for more complex systems. Since To is a function of

the system parameters as well as the selected number of delay elements,

the difficulty in modeli selection increasesa-3 the number of system

pa rameters increases.
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APPENDIX A

ESTABLISHMENT OF CONSTRAINTS ON dm

Let the quantity xm be given by

2a u) T
2

2 m2 + T2(a2 .u 9) (123)

Then from Equation (99)

(r. " tan, (xm) (124)

From Equation (95) it is easily shown that

0O1C'rn<lf' 0 (125)

for finite W. Hereafter we consider only finite, non-negative values

of 0). By Bquation (123) it follows that

-l XM 0 1 .5 M 6 T [,,2 - 2a - a21 (126)

-I x < -1 , L[I -2c4 -< 2 2 io -a

1 < xm -< -I ,  - < 1I2 N  a -a

7(128)

1 < XM < T 2 2_ 82 M < -1 2 + 2a u-a.(a2] )
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0 -g-X .1 1, W + 2a 0-2 (129)

We recall that mn in the above equations is a positive integer. Let ml

be the first positive Integer (FPI) less than or equal to, depending on

the value of a), the upper limit on m in Relation (126). From Relation

(127) lot mn2 be the FPI greater than this expression. The term mn3 is

the FPI less than or equal to the upper limit on in in Relation (128),

and so on with the next two relations through m6. With the series

representations

tan 1 x - T~x.jxe~x x 5 1

(130)

tanL1  A ta- 1

L7 tan- 1 x i
4 4

ta- 1 1 = ., x L 5X 2 s 1
T 5

(132)

Stan1I

we keep only part of each series to give from Equations (126) through

(129)
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If W j a, then m is defined only for m k m6. For instance, in Relation
(129) lot W - ko) a, vhere 0 g koj 1. Then since a T <

T[&)2 + 2a u) - a I ]<-E

Hence from Relation (133)

0 ,g Om < ; [N.] W a a .(134)

Let quantities P and Q be given by

p . 2aa T2 (135)

Q N T2(a2 - U 2 ) (136)
T 2

Then from Equation (123)

xM- (137)

It follows that
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XM P (138)

By Equation (55) we obtain

Therefore from Relation (50)

0 1

and Relation (102) is established.

For a0) >a we have by Relation (125)

01< F ,ku)> 1 (1141)

This establishes Relation (103).
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APPENDIX B

ESTABLISMNT OF CONSTRAINTS ON

Employing Equations (101) and (iii) we obtain from Equation (109)

+ Y (1- kj 2, [21i4}-1 ] . (142)

It follows that

Let kI be defined by

kj (144.)

Then for the cuantity in the first pair of vertical bars in Relation

(143),

l im k)] > 0 , 0 g kw < kI (145)

Fo1 the remainder 2L this work the limits on e iLn houation 114.) are

aseu .
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Introduce Om, where

Wence, by Relation (145),

From Equation (146) and Relation (112),

1

for any m. Let the quantity um be given by

Then

f11-] -m sum (150o)

The following established relationships are noted:12

Ln (1 +x) x, x Z0 (151)

Y
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Thus from Equation (149)

Urn (153)

Substituting the expression for Qm in this relation and employing

Equation (55) gives

um 96

Hence

6 ,xp - ] , 0 + .1 < k . (155)

In order to establish a lower constant forl E , introduce Rm,

where

From Equation (142) it follows that

From Relation (112) the limits on R, are given by

- - , < i . (158)

Let vm be defined by
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*MwM n[ . (159)

Hence

Define the Quantity R by

R yjk (161)

Thua

Since from Relation (112)

-YIIc~ k i - 11- 2 (163)

for all mn, we have

We note that12

(165)



Thus from, Equation (159) and Relations (164) and (165),

* 'm[R11 [-1 (166)

We substitute the expression for R in Relation (166) and employ Equzation

(55). Then by Equation (160)

S exp j ki- i 11f' 0 kv 4k 1 67

Relations (155) and (167) establish Relation (3.13).


